Proposal of a new method for subtyping of *Mycobacterium kansasii* based upon PCR-restriction enzyme analysis of the *tuf* gene

Zofia Bakuła¹, Magdalena Modrzejewska¹, Aleksandra Safianowska², Tomasz Jagielski¹

¹ Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
² Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Żwirki i Węgierskiej 61, 02-091 Warsaw, Poland

The study was financed by the National Centre for Research and Development «LIDER» Programme (LIDER/044/457/L-1/12/NCBR/2013)

Introduction and Aim

Mycobacterium kansasii, an important cause of pulmonary disease, closely resembling pulmonary tuberculosis, is one of the most frequently recovered clinical species of non-tuberculous mycobacteria [1]. Seven *M. kansasii* subtypes or genotypes I-VII have been recognized [2]. This intraspecies heterogeneity has clinical and epidemiological implications. Types I and II are the most prevalent and have been associated with human disease, whereas the other five (III-VII) are predominantly of environmental origin [3, 4]. Currently, there are two major methods used for the identification of *M. kansasii* subtypes I-VI, with either hsp65 or rpoB gene coding for the 65-kDa heat shock protein and β-subunit of RNA polymerase, respectively, or 16S-23S rDNA internal transcribed spacer (ITS) as molecular targets [5-7]. Recently, the *tuf* gene, coding for the Tu (thermo-unstable) elongation factor (EF-Tu) has been exploited as a useful marker for the taxonomic classification of mycobacteria [8].

The aim of this study was to investigate whether the *tuf* gene can be used for subtyping of *M. kansasii*.

Materials and Methods

Six bacterial strains, representatives of six *M. kansasii* subtypes (I-VI) were used in the study. All strains were cultured on Löwenstein-Jensen medium. Genomic DNA was extracted with the cetyl-trimethyl-ammonium bromide (CTAB) method, as described elsewhere [9]. For the amplification of the *tuf* gene fragment (ca. 740 bp) a PCR protocol with T1 and T2 primers was employed [8]. The same primers were used for sequencing of the obtained amplicons. Based on the sequence data, the search for a restriction enzyme that would yield genotype-specific patterns and simulations of restriction digestions were performed *in silico* by using insilico.ehu.es software. The DNA fragments were electrophoresed and visualized by staining with ethidium bromide and UV fluorescence.

Results

Upon *in silico* analysis, Mval was found as the only enzyme to produce distinct patterns for each of the six (I-VI) *M. kansasii* subtypes and thus was selected for PCR-restriction enzyme analysis (REA) assay. The amplicons representing partial *tuf* gene sequence were Mval-digested and the resulting DNA fragments matched exactly those established *in silico*. The specific and unique restriction patterns determined for *M. kansasii* subtypes I-VI are given below (TABLE 1, FIGURE 1).

TABLE 1. Differentiation of *M. kansasii* subtypes by Mval PCR-REA of the *tuf* gene

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Fragments length [bp]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>designed in silico</td>
</tr>
<tr>
<td>I</td>
<td>321, 87, 84, 70, 69, 59, 51</td>
</tr>
<tr>
<td>II</td>
<td>321, 121, 87, 84, 69, 58</td>
</tr>
<tr>
<td>III</td>
<td>321, 171, 71, 69, 58, 51, 6</td>
</tr>
<tr>
<td>IV</td>
<td>492, 72, 63, 58, 51, 6</td>
</tr>
<tr>
<td>V</td>
<td>390, 171, 71, 57, 51</td>
</tr>
<tr>
<td>VI</td>
<td>408, 120, 84, 72, 59</td>
</tr>
</tbody>
</table>

Conclusion

In this study, a new PCR-REA assay was proposed, which allows for differentiation of *M. kansasii* subtypes with the use of only one restriction enzyme. This could be a new molecular tool for the discrimination of *M. kansasii* subtypes.

REFERENCES: